Written test Statistics for Electronics (Tuesday 15.15 group)

Task 1: Given a four element probability space $\Omega=\{(a, a),(a, b),(b, a),(b, b)\}$ with probabilities $P((a, a))=P((a, b))=P((b, a))=P((b, b))=\frac{1}{4}$.
a) Define random variables X and Y on Ω such that X and Y are independent
b) compute the expectation of $X \cdot Y$
c) Find two events A and B on Ω such that A and B are disjoint and compute $P(A \cup B)$.
d) Find two events C and D on Ω such that C and D are independent and compute $P(C \cap D)$

Task 2: given a continuos random variable X with values in $[1, \infty)$ and cumulative distribution function $F_{X}(z)=\left\{\left.\begin{array}{c}1-z^{-2} \text { for } z \geq 1 \\ 0 \text { for } z<1\end{array} \right\rvert\,\right.$. Compute the following:
a) The density $\varphi_{X}(z)$ of the random variable X and sketch the graphs of F and φ
b) The expectation and variance of X
c) The probability $P\{X=3\}$ that the random variable X has value equal to 3 .
d) The probability $P\{0 \leq X \leq 2\}$ that the random variable has value in the interval $[0,2]$.

Task 3: A fair coin is thrown 40000 times .
a) Use the central limit theorem to give an approximate upper bound on the probability that head appears at least 20300 times. List of values for the cumulative distribution function $\Phi(z)$ of the standard normal distribution (expectation zero and variance 1):
$\Phi(1)=0.84134 ; \Phi(1.5)=0.93319 ; \Phi(2)=0.97725 ; \Phi(2.5)=0.99379 ; \Phi(3)=0.99865 ; \Phi(3.5)=$ $0.99977 ; \Phi(4)=0.99997$
b) (optional): Compare the result obtained in task 6 a with an upper bound obtained with the help of Hoffding's inequality. Which bound is better?

Hint : The Hoffding inequality states the following: Let $\left\{X_{i}\right\}_{i=1}^{n}$ be a sequence of independent identically distributed random variables X_{i} such that $a \leq X_{i} \leq b$. Let μ be the expectation of X_{i} and let $c=b-a$. Then the following holds for all $n \geq 1$ and $t \geq 0$

$$
\begin{equation*}
P\left\{\sum_{i=1}^{n} X_{i}-n \mu \geq t\right\} \leq e^{-\frac{2 t^{2}}{n c^{2}}} \tag{1}
\end{equation*}
$$

Task 4: Given two independent random variables X and Y with $E X=1$ and $\operatorname{Var} X=2$ and $E Y=2$ and $\operatorname{Var} Y=1$. Use the Chebychev inequality to estimate $\operatorname{Pr}\{|2 Y-3 X-1| \geq 8\}$ from above.

Task 5: Given n independent samples $\left\{x_{i}\right\}_{i=1}^{n}$ of a random variable X. It is known that the random variable X has a density of the form $\varphi(x)=(a-1) x^{-a}$ for $x \geq 1$ and zero otherwise . The parameter $a>2$ is unknown. Derive a formula for the maximum likelihood estimator $\tilde{a}_{M L}$ of the parameter a, given $\left\{x_{i}\right\}_{i=1}^{n}$.

