Task 1: Given a four element probability space $\Omega = \{(a, a), (a, b), (b, a), (b, b)\}$ with probabilities $P((a, a)) = P((a, b)) = P((b, a)) = P((b, b)) = \frac{1}{4}$.

a) Define random variables X and Y on Ω such that X and Y are independent

b) compute the expectation of $X \cdot Y$

c) Find two events A and B on Ω such that A and B are disjoint and compute $P(A \cup B)$.

d) Find two events C and D on Ω such that C and D are independent and compute $P(C \cap D)$

Task 2: given a continuos random variable X with values in $[1, \infty)$ and cumulative distribution function (a) $\begin{bmatrix} 1 - z^{-2} & \text{for } z \ge 1 \end{bmatrix}$

 $F_X(z) = \begin{cases} 1 - z^{-2} \text{ for } z \ge 1\\ 0 \text{ for } z < 1 \end{cases}$. Compute the following:

a) The density $\varphi_X(z)$ of the random variable X and sketch the graphs of F and φ

b) The expectation and variance of X

c) The probability $P\{X=3\}$ that the random variable X has value equal to 3.

d) The probability $P\{0 \le X \le 2\}$ that the random variable has value in the interval [0, 2].

Task 3: A fair coin is thrown 40 000 times .

a) Use the central limit theorem to give an approximate upper bound on the probability that head appears at least 20300 times. List of values for the cumulative distribution function $\Phi(z)$ of the standard normal distribution (expectation zero and variance 1):

 $\Phi(1) = 0.84134; \Phi(1.5) = 0.93319; \Phi(2) = 0.97725; \Phi(2.5) = 0.99379; \Phi(3) = 0.99865; \Phi(3.5) = 0.99977; \Phi(4) = 0.99997$

b) (optional): Compare the result obtained in task 6a with an upper bound obtained with the help of Hoffding's inequality. Which bound is better?

Hint : The Hoffding inequality states the following: Let $\{X_i\}_{i=1}^n$ be a sequence of independent identically distributed random variables X_i such that $a \leq X_i \leq b$. Let μ be the expectation of X_i and let c = b - a. Then the following holds for all $n \geq 1$ and $t \geq 0$

$$P\left\{\sum_{i=1}^{n} X_i - n\mu \ge t\right\} \le e^{-\frac{2t^2}{nc^2}} \tag{1}$$

Task 4: Given two independent random variables X and Y with EX = 1 and VarX = 2 and EY = 2 and VarY = 1. Use the Chebychev inequality to estimate $Pr\{|2Y - 3X - 1| \ge 8\}$ from above.

Task 5: Given *n* independent samples $\{x_i\}_{i=1}^n$ of a random variable *X*. It is known that the random variable *X* has a density of the form $\varphi(x) = (a-1)x^{-a}$ for $x \ge 1$ and zero otherwise. The parameter a > 2 is unknown. Derive a formula for the maximum likelihood estimator \tilde{a}_{ML} of the parameter *a*, given $\{x_i\}_{i=1}^n$.